68804
PTDC/QUI/68804/2006
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Portugal
5876-PPCDTI
65,856.00 €
2008-01-01
2010-12-31
The aim of this study was to evaluate the possibility of preparing chitosan porous matrixes using supercritical fluid technology. Supercritical immersion precipitation technique was used to prepare scaffolds of a natural biocompatible polymer, chitosan, for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery sy...
Cells microencapsulated in biocompatible semi-permeable polymeric membranes are effective as cell delivery systems while protecting the host against immune responses. In this study, cell encapsulation membranes were prepared based on carrageenan and alginate, two natural cationic polymers. Different formulations/conditions were explored to optimize the microcapsules which were characterized with respect to thei...
Tissue engineering strategies have been showing promising early results in articular cartilage lesions repair. Hydrogels based on natural origin polymers as chitosan glycerol-phosphate (CGP) thermosensitive formulation that can be implanted in a minimal invasive manner, represent a great promise as injectable scaffold choice for cartilage tissue engineering, but it lacks in mechanical properties. A different fo...
Polymers have gained a remarkable place in the biomedical fi eld as materials for the fabrication of various devices and for tissue engineering applications. The initial acceptance or rejection of an implantable device is dictated by the crosstalk of the material surface with the bioentities present in the physiological environment. Advances in microfabrication and nanotechnology offer new tools to investigate ...
Purpose: To implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydro- gel beads in which the bioactive substance is introduced in the particles during their formation. Methods: Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed by photo-crosslinked dextran-methacrylated and thermal responsive po...
The Layer-by-Layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporat...
An elastin-like recombinamer (ELR) containing the RGD cell adhesion domain was used to fabricate microparticles by an innovative and affordable process based on the use of superhydrophobic surfaces. Two microparticles types with different crosslinking extents were prepared. The biological response was tested using an osteoblast-like cell line (SaOs-2) performing proliferation and alkaline phosphatase (ALP) quan...
The application of green chemistry principles in the processing of materials for advanced technologies is a steadily increasing field of research. In this work porous chitin-based materials were developed by combining the processing of chitin using ionic liquids (ILs)as a green solvent together with the use of super- critical fluid technology(SCF) as clean technology.Chitin was dissolved in 1-butyl-3-imidazolium ...
The control of stem cell differentiation to obtain osteoblasts in vivo is still regarded as a challenge in stem-cell-based and bone-tissue engineering strategies. Biodegradable dexamethasone-loaded dendron-like nanoparticles (NPs) of carboxymethylchitosan/poly(amidoamine) dendrimer have been proposed as intracellular drug-delivery systems of bioactive molecules. In this study, combination of nanotechnology, ste...
In this work, the authors propose to explore the binding potential of nonostructured multilayers produced by layer-bylayer self-assembly based on perfusion technique, which was otherwise limited to coating only. Random spherical wax templates of same size were transformed into moldable soft three-dimensional (3D) core material with different external geometries. Placement of template spheres with different size...
<script type="text/javascript">
<!--
document.write('<div id="rcaap-widget"></div>');
document.write('<script type="text/javascript" src="https://www.rcaap.pt/snippet?resource=documents&project=FCT%2F5876-PPCDTI%2F68804&fields=id,titles,creators,issueDate,link,descriptions"></script>');
-->
</script>